2. Метод социометрических измерений. Сущность и область
применения.
В социологии между указанными двумя ситуациями нет непреодолимой пропасти. Для социолога любая переменная, находящаяся в результате производного измерения, всегда в той или иной мере является латентной: исследователь практически никогда не может быть уверен, что предположение о самом существовании этой переменной адекватно моделирует ситуацию, что наблюдаемое поведение отражает именно то, что интересует исследователя, и т.д. И продвинутые способы измерения всегда дают возможность пересмотра социологом наименования переменной или вообще отказа от убежденности в ее существовании.
Основой модельных представлений, заложенных в известных методах шкалирования, является сопоставление с каждой измеряемой переменной (в том числе латентной) некоторой протяженности, психологического континуума
— прямой линии (числовой прямой, числовой оси), на которой мы размещаем те объекты, которым в результате измерения должны приписать числа (термин "континуум" означает непрерывность). Это предположение является естественным, в его целесообразности не сомневается ни один социолог, но в нем имеются свои "подводные камни".
Так, на практике исследователь иногда забывает о том, что, приписывая числа объектам, т.е. размещая их на указанной прямой, он, как правило, не определяет место размещения объекта однозначно, не "прибивает гвоздями" объект к оси. "Числа", используемые социологом, заданы не однозначно, а как бы "плавают" на оси. Например, как нетрудно проверить, для определенных выше типов шкал эквивалентными являются совокупности шкальных значений, представленные в табл. 1.1.
Таблица 1.1. Свойства шкал рассматриваемых типов
Тип шкалы
|
Отношения, сохраняю-
щиеся при отображении
ЭСО в ЧСО
|
Пример эквива-
лентных совокупнос-
тей шкальных значений
|
Номинальная
|
а= Ь
|
1 2 3 4 5
10 31 2 5 118
|
Порядковая
|
а = Ь, а > Ь
|
12345 10 31 44 100 118
|
Интервальная
|
а = Ь, а > Ь
а- Ь= с – d
а - Ь> с - d |
1 2 3 4 5
10 31 52 73 94
|
Действительно, если интересуют только эмпирические отношения равенства — неравенства, скажем, если мы измеряем профессию, безразлично, какими цифрами зашифровать наши объекты: с точки зрения смысла решаемой задачи совершенно безразлично, припишем ли мы токарю — 1, пекарю — 2, лекарю — 3,либо же токарю — 10, пекарю — 31, а лекарю — 2. Требуется лишь, чтобы всем токарям было приписано одно и то же число, чтобы это число не совпадало с числом, приписанным пекарям, и т.д. А вот если мы ставим своей целью сохранить в числах некое эмпирическое отношение порядка, то тут уже набор чисел во второй строке не будет эквивалентен набору 1, 2, 3, 4, 5, поскольку эти наборы отражают разный порядок. Вели же мы учитываем порядок расположения по величине неких эмпирических интервалов между рассматриваемыми объектами, то набору 1, 2, 3, 4, 5 может быть эквивалентен только такой набор, в котором интервалы между последовательными числами равны. В подобных соображениях выражается нечисловая сущность наших шкальных значений. И это положение принципиально. Оно вытекает из сути той роли, которую играет число в социологии.
Перейти на страницу:
1 2 3 4